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ABSTRACT 

Yarn produced from a series of experiments carried out at Southern Range Nyanza Limited (SRNL) 

in Jinja – Uganda was used in developing an Adaptive Neuro-Fuzzy Inference System (ANFIS) 

model to probe the yarn unevenness of a polyester/cotton (65:35) blend. Blending was carried out 

at the draw frame. Parameters which are functions of yarn unevenness such as yarn count, spindle 

speeds and yarn twist were used as inputs for the ANFIS model. Coefficient of Variation (CV%) 

was used as a measure of yarn unevenness, the output of the model. The model had an R-square 

(R2) of 0.86, Root mean square error (RMSE) of 0.65 and SSE of 10.86, therefore rendering the 

ANFIS model a success and superior to linear regression methods in predicting polyester/cotton 

yarn unevenness. 
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1. Introduction 

Uganda is one of the leading cotton 

growing countries in Africa with a growing 

textile industry which has been existent since 

1920s (John Baffes, 2009) The Ugandan 

textile industry produces both fabrics and 

yarns which are exported worldwide 

including the United States of America 

through the Africa Growth Opportunities Act 

(AGOA). Due to the increasing market of 

Ugandan textile products because of the 

quality of her cotton, spinners are obliged to 

produce fabrics and yarns which meet 

international standards majorly the European 

Union and United States of America. 

 Besides the agronomic factors 

which can’t be directly controlled by the 

industry, the industry related inputs which 

affect the quality of the produced yarn or 

fabric are supposed to be optimized. 

Blending of fibrous materials is a common 

phenomenon whereby spinners blend 

different fibers according to a specific blend 

ratio for the purpose of harnessing robust 

appearance, comfort and mechanical 

properties. The most widely used blend in the 

Ugandan textile industry is of 

Polyester/Cotton (PC) (Kotb, 2012).   

Depending on the end product, yarn 

obtained from the spinning process may 

undergo knitting or weaving; due to the 

complicated nature of fabric production 

processes, production of a faultless yarn 

desires the afore-knowledge of the factors 

influencing production of a perfect fabric. 

One of the defects in spinning which go on 
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into post spinning processes is yarn 

unevenness which is a function of fiber 

strength, fineness, twist, count etc.  

 

1.1 Yarn unevenness 

The yarn quality is majorly influenced 

by the yarn structure (yarn count and twist), 

unevenness (neps, hairiness), physical and 

mechanical properties (strength and 

elongation) (Kotb, 2012; Admuthe et al., 

2010). Due to the nature of natural fibrous 

textile materials, there is variability in terms 

of diameter along the fiber length; this 

therefore contributes to the variability of yarn 

fineness. The variability along the yarn is 

known as yarn unevenness. During weaving 

and knitting processes, the yarn produced by 

a spinner undergoes a series of mechanical 

processes, which require the yarn to bear the 

different loading conditions it is subjected to; 

therefore, yarn unevenness can have adverse 

effects in production such as yarn breakage, 

fabric faults, uneven dye penetration etc. 

Statistical methods are used to probe yarn 

unevenness, therefore irregularity percentage 

(U%), which is the materials percentage 

deviation in mass of unit length and the 

coefficient of mass variation percentage 

(CV%) calculated as shown in equation (1) 

are widely accepted. 

C. V% =
StandardDeviation

Average
x100    (1) 

 

1.2 Soft Computing 

Modeling textile properties using soft 

computing techniques such as fuzzy logic in 

combination with Neuro-computing and 

genetic algorithms has attracted a lot of 

research and are the front seat drivers for soft 

computing (Babay et al., 2005; Demiryurek 

& Koc, 2009; Majumdar, 2010; Admuthe et 

al., 2010). Majumdar, 2010 showed that 

Artificial Nueral Networks (ANNs) had a 

problem of black boxing; they do not create a 

relationship between input and output 

parameters. Jang (1993) indicated that Fuzzy 

logic had no standard way for transforming 

human knowledge or experience into the rule 

base of a Fuzzy Inference System (FIS). 

There is therefore a need to map Membership 

Functions (MFs) to minimize output errors 

and measure or maximize the performance 

index. ANFIS serves as a basis for 

constructing Fuzzy If-then rules with 

appropriate membership functions to 

generate a stipulated input-output. N.A. 

Kotb, 2012 developed a linear regression 

model for polyester/cotton from fiber types 

and yarn structures. However, like other 

researchers predicted (El Mogahzy et al., 

1990; Chanselme et al., 1997) linear 

regression performance is lower than that of 

ANFIS models. Ke-Zhang & Ning, 2000; 

Cyniak et al., 2006 studied the influence of 

several parameters, drafting system, roving 

hank, Break draft, traveler weight, on yarn 

unevenness, fiber properties on yarn 

unevenness. Assad & Muhammad, 2012; 

Jerzy & Tadeusz, 2006 showed that yarn 

count and twist have a great influence on 

unevenness whereas EL, 2009 and 

Chaudhuri, 2003 suggested the significant 

influence of spindle speed on yarn 

unevenness. 

Adaptive Neuro-Fuzzy Inference 

System (ANFIS) has shown superiority in 

modeling textile process as compared to its 

counterparts like Artificial Neural Networks 

(ANNs) and fuzzy logic. (Majumdar, Ciocoiu 

& Blaga, 2008). 

The purpose of this research is 

therefore to create an Adaptive Neuro-Fuzzy 

Inference System (ANFIS) model to predict 

yarn unevenness for the first time using input 

data of spindle speed, yarn twist and yarn 

count. 

 

2. Materials and Methods 

A series of experiments were performed 

on various ring frame machines operating 

under various control parameters. Yarn was 

produced from polyester/cotton with a blend 

ratio 65:35. Yarn blending was carried out on 

the draw-frame. Roving was produced from a 

speed frame and resultant output tested. 

Draw-frame sliver and roving properties are 

presented in Table 1. Coefficient of Variation 

(CV) and Irregularity (U) tests were carried 

out on an Uster tester 3, v2.50. 
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Table 1. Materials and their various properties used to produce yarn 

 

 

 

ROVING 

 

 

 

 

Material Hank U% CV% COUNT ∆U% ∆CV% 

PC  65:35 
0.83 4.46 5.64 22 5.55 7.18 

(combed) 

PC 65:35 
0.13 5.06 6.28 22 6.63 9 

(carded) 

PC  65:35 
0.12 1.47 1.86 0.83 2.99 3.78 

(Combed) 

DRAW FRAME 

 

PC 65:35 
0.12 2.36 2.95 0.13 2.1 3.33 

(Carded) 

 

A fractional factorial experiment 

design was used to obtain data for training 

and validating the ANFIS model. 

Experimental design was based on, Jiju and 

Nick (1998).  Table 2 shows data obtained 

during the experimentation and testing 

process. Testing was carried out at room 

temperature 27oC and pressure 76mm/Hg. 

Number of trails for the factorial experiment 

is given by N= 2K where K is number of 

control parameters having two levels of 

interaction. Twenty-eight data sets were used 

for training the ANFIS. Table 2.shows the 

results from the experimentation. 

 

Table 2. Mean measured values 

TRAIL NO. COUNT SPINDLES TWIST ACTUAL CV% 

1 15 10908 18.28 13.10 

2 15 8294 18.28 13.21 

3 15 10908 15.68 11.32 

4 15 8294 16.12 12.60 

5 15 8294 15.68 12.20 

6 15 8294 15.68 13.39 

7 20 10500 17.62 11.82 

8 20 10500 17.62 11.84 

9 22 11200 20.72 11.63 

10 22 11200 18.28 11.5 

11 22 13100 16.12 13.29 

12 22 11200 16.12 15.23 

13 22 13100 15.23 13.20 

14 22 11200 15.23 12.82 

15 27 8294 18.28 15.88 

16 27 11500 18.28 12.91 

17 27 11500 18.28 14.36 

18 27 10500 18.28 13.51 

19 27 8294 18.28 14.21 
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20 27 12110 21.12 15.37 

21 30 13100 20.72 19.13 

22 30 10500 20.72 14.38 

23 30 10500 20.72 15.28 

24 30 8294 20.72 14.22 

25 30 8294 18.68 13.38 

26 30 8294 18.68 14.79 

27 30 8294 18.68 16.21 

28 30 13100 15.23 14.61 

 

2.1 Fuzzy Inference System (FIS) 

properties 

Fuzzy logic is based on the principle of 

fuzzy sets. A fuzzy set is one without a crisp, 

clearly defined boundary (Jang 1993). It can 

contain elements with only a partial degree of 

membership. In fuzzy logic, the membership 

of a value becomes a matter of degree. A 

fuzzy set is an extension of a classical set. If 

𝑈 is the universe of discourse and its 

elements are denoted by 𝑥, then a fuzzy set 

‘𝐴’ in 𝑈 is defined as a set of ordered pairs. 

 

𝐴 = {𝑥, 𝜇𝐴(𝑥)|𝑥 𝑋}                            (2) 

 

Where, 𝜇𝐴(𝑥) is the Membership Function 

(MF) of x in 𝐴. The membership function 

maps each element of 𝑈 to a membership 

value between 0 and 1. 

A Takagi-Sugeno FIS model was used 

to train the network. 2-4-3 generalized bell 

membership functions (gbellmf) were 

selected for the FIS as they yielded the least 

training error. Figure 1 shows a plot of the 

membership functions. The parameters 

associated with the membership functions 

change through the learning process until 

optimum ones are obtained. A gradient vector 

technique facilitates the computation of these 

parameters (or their adjustment) as in 

Artificial Neural Networks. A gradient vector 

provides a measure of how well the fuzzy 

inference system is modeling the input/output 

data for a given set of parameters. When the 

gradient vector is obtained, optimization 

routines can be applied in order to adjust the 

parameters to reduce error measure. 

 

 

Figure 1. Input Membership Functions a) Yarn count, b) Spindle speed c) Twist 
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Figure 2 shows a plot of the system 

model. The system model a diagrammatical 

illustration of how an Adaptive Neural fuzzy 

inference system (Model1) is applied to the 

three inputs, count, spindle and twist to 

produce the predicted output C.  

 

2.2 Fuzzylinguistic Rules 
After determining the fuzzy set and the 

corresponding membership functions, 

linguistic terms are then used to create the 

corresponding fuzzy rules. For a 2-4-3 

gbellmfs, the following linguistic terms 

where used.

 

 

Figure 2. System model: 3 inputs, 1 output, 24 rules 

 

Table 3. Linguistic terms for each membership function 

COUNT SPINDLE SPEED YARN TWIST 

Coarse Very Low Soft 

Fine Very High Hard 

 Low Average 

 High  

 

Using the fuzzy sets and linguistic terms, a 

set of ‘If-Then’ Rules are created. Fuzzy rules 

provide a quantitative reasoning that maps 

input fuzzy sets with output fuzzy sets.A 

fuzzy rule base consists of a number of fuzzy 

rules. For example in case two inputs A and 

B with an out CInput Membership Functions, 

𝐴, 𝑥𝑖 𝐵, 𝑦𝑖, Output membership functions 

𝑐, 𝑧𝑖 
 

Where 𝑥, 𝑦, 𝑧 are variables representing 

𝐴, 𝐵, 𝐶 linguistic terms. Fuzzy ‘If-Then’ can 

be created as: 

 𝐼𝑓 𝐴 𝑖𝑠 𝑥 𝑎𝑛𝑑 𝐵 𝑖𝑠 𝑦 𝑡ℎ𝑒𝑛 𝐶 𝑖𝑠 𝑧 
 

Twenty-four ‘If-Then’ rules were trained. 

Linguistic rules help in understanding the 

relationship between the various input 

parameters and the output. Table 4 shows the 

rules that were used to train the ANFIS 

model. 
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Table 4. Linguistic ‘If-Then’ rules used for training ANFIS 

RULE COUNT SPINDLE SPEED YARN TWIST CV-MF 

1 Coarse V.Low Soft 1 

2 Coarse V.Low Average 2 

3 Coarse V.Low Hard 3 

4 Coarse Low Soft 4 

5 Coarse Low Average 5 

6 Coarse Low Hard 6 

7 Coarse High Soft 7 

8 Coarse High Average 8 

9 Coarse High Hard 9 

10 Coarse V.High Soft 10 

11 Coarse V.High Average 11 

12 Coarse V.High Hard 12 

13 Fine V.Low Soft 13 

14 Fine V.Low Average 14 

15 Fine V.Low Hard 15 

16 Fine Low Soft 16 

17 Fine Low Average 17 

18 Fine Low Hard 18 

19 Fine High Soft 19 

20 Fine High Average 20 

21 Fine High Hard 21 

22 Fine V.High Soft 22 

23 Fine V.High Average 23 

24 Fine V.High Hard 24 

 

 2.3  ANFIS 

Architecture 

Data obtained from the experiments 

was divided into two sets: Checking and 

Training data. Twenty sets of data where 

used for checking the network while eight 

data sets where used to check the network. 

Training of the model was carried out for ten 

epochs. A hybrid-training algorithm was 

used to train the network. An average error of 

0.403 and 1.702 where obtained for the 

training and checking data sets respectively. 

 Figure 3shows the resulting ANFIS 

structure for a model having three inputs, 2-

4-3 input membership functions (Inputmf) 

and having twenty-four rules (rules). The 

lines show how each of the rules are applied 

to the membership functions to form an 

output membership function (Outputmf). An 

output is generated from the inference 

process as shown in the structure below.
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Figure 3. ANFIS Structure; three inputs (Count, Twist and Spindle speed), one output 

(Yarn unevenness), Twenty-four rules 

 

Figure 3 shows the various layers of the 

ANFIS and how a fuzzy rule set is applied to 

give result a given output. 

 

For example a rule may be given by: 

 

If count (A) is fine (x1) and Speed (B) is low 

(y1) and twist (C) soft (z1) then: 

 

𝑓1 =  𝑝𝑥1  +  𝑞𝑦1  + 𝑟𝑧1 + 𝑠                  (3) 

 

The rules can be created for each of the 

inputs, A, B and C. 

 

Layer 1 (Inputmf) 

Every node in this layer is adaptive node with 

a node function as given below: 

 

𝑂1𝑖 = µ𝑥𝑖(𝐴) (𝑖 = 1,2) 𝑜𝑟 𝑂1𝑖 =
µ𝑦𝑖(𝐵) (𝑖 = 1,2,3,4) 𝑜𝑟 𝑂1𝑖 = µ𝑧𝑖(𝐶) (𝑖 =

1,2,3)                    (4) 

 

xi ,yi, zi, are linguistic terms like (coarse, fine) 

associated with each of the nodes. The output 

of this layer is the membership grade of a 

fuzzy set  

 

Layer 2  

It consists of a fixed node (not shown in 

Figure 4) the output of the node is a product 

of all incoming signals before rules are 

applied as shown in the following function: 

 

𝑂2𝑖 =  µ𝑥𝑖(𝐴) µ𝑦𝑖(𝐵) µ𝑧𝑖(𝐶)  =  𝑤𝑖           (5) 

Each output of this layer represents the firing 

strength of each rule. In general any T-norm 

operator that can perform fuzzy AND can be 

used as a node function in this layer 

 

Layer 3, (Rules) 

Every node in this layer is a fixed node. The 

i th node in this layer calculates the ratio of 

the i th rules firing strength to the sum of all 

firing strength. The output of this layer is 

called the normalized firing strength. 

 

   O3i = 
𝑤𝑖

𝑤1+𝑤2+𝑤3
 =𝑤𝑖̅̅ ̅                         (6) 

 

Layer 4 (Outputmf) 

Every node in this layer is an adaptive node 

with a node function  

 

O4i=𝑤𝑖̅̅ ̅𝑓𝑖 = 𝑤𝑖̅̅ ̅(𝑝𝑖(𝐴) + 𝑞𝑖(𝐵) + 𝑟𝑖(𝐶) + 𝑆𝑖)                

      (7) 

 

𝑤𝑖̅̅ ̅ , is the normalized firing strength from 

layer 3, P,q,r,s are set parameters and are 

referred to as the consequent parameters. 

 

Layer 5 

The layer after the rules is a fixed node and 

computes the overall output as a summation 

of all incoming signals: 

 

O5i=∑ 𝑤𝑖̅̅ ̅𝑓𝑖=
∑ 𝑤𝑖𝑓𝑖

∑ 𝑤𝑖
                                 (8) 
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3.0   Results and Discussion 

3.1 Prediction performance and model 

validation 

Most of textile processes are inexact, 

computationally hard with no known 

algorithm to predict them, therefore this 

warrants for application a higher order 

prediction model such as ANFIS to study the 

processes compared to other soft computing 

techniques. Figure 5 and 6 show plots of 

actual and predicted values for the ANFIS 

and linear regression for polyester cotton 

yarns. Figure 7 and 8 show model validation 

using R2which provides a measure of how 

well observed outcomes are replicated by the 

model, as the proportion of total variation of 

outcomes explained by the model. ANFIS 

model had a R2 of 0.86 and RMSE of 0.65 

compared to linear regression which had an 

R2 of 0.41 and RMSE 1.33. 

 

Figure 5. Prediction performance for each sample-linear regression model 

 

Figure 6. Prediction performance for each sample - ANFIS model 
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Figure 7. Predicted Vs. Actual CV%-linear regression 

 

Figure 8. Predicted Vs. Actual CV%-ANFIS 

3.2  Data fit comparisons of models 

Prediction performance of the model 

was compared against that of linear 

regression as shown in Table 5. The ANFIS 

model had an R2 of 0.86 compared to 0.41. 

Table 5 shows a summary of the goodness fit 

for both the ANFIS and obtained linear 

regression model. Figures5 and 6 show plots 

of the actual and predicted coefficient of 

variation for linear regression and ANFIS 

model. Plots of the ANFIS results show 

better performance as can be observed. A 

value of R2 closer to one meant a better fit for 

ANFIS.  

The R2 from the ANFIS showed that 

the model could account for 86% of the 

variations in the data about the average, 

which is good fit. While regression could 

only account for 41%  
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For ANFIS the 0.14 (14%) remaining 

can be ascribed to both assignable causes like 

processing parameters and conditions of both 

spinning and speed-frame and random causes 

like inherent fiber diameter variations. 

 

Table 5. Descriptive statistics of all models for the prediction of yarn unevenness 

 

 LINEAR REGRESSION ANFIS 

Regression Coefficients X1 X2 X3 C   

 7.31 0.61 0 0.11 

 

RMSE 1.33 0.65 

SSE 46.47 10.86 

R2 0.41 0.86 

Adjusted R2 0.39 0.86 

 

 

 
Figure 4. Surface plots; a) Spindle speed, Count vs. CV b) Twist, Count vs. CV c)Twist, 

Spindle speed vs. CV 

 
3.3 Influence of inputs on yarn 

unevenness 

From the rules generated by the FIS 

(4), influence of each of the inputs can be 

shown. From rule one, if count is coarse, 

spindle speed is very low and yarn twist is 

soft, then yarn unevenness will be given by 

output membership function one. If count is 

coarse, spindle speed is Very low and count 

is average then spindle speed is given by 

membership function 2. If spindle speed is 

very low, count is coarse, and yarn twist is 

hard, then yarn unevenness will be given by 

membership function 3. If count is coarse and 
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spindle speed is low but yarn twist is soft then 

yarn unevenness will be given by the 

membership function 4 Similar relationships 

can be drawn from each of the rules presented 

in the Table 4. The relationship created by 

each of the rules between membership 

functions can be converted into surface plots 

to best visualize the interaction of each of the 

inputs on the output. Figure 4 shows surface 

plots that relate inputs to the outputs 

4. Conclusion 

This research studied the influence of 

spindle speed, yarn twist, and yarn count on 

polyester/cotton (65:35) yarn unevenness. 

Findings showed that an increase in yarn 

twist increased yarn unevenness while 

increase in yarn count led to a reduction in 

yarn unevenness. This was consistent with 

findings of other publications elsewhere 

(Majumdar, 2010; Admuthe et al., 2010; 

Chattopadhyay, 2007; Cyniak et al., 2006). 

From the summary table 5, it can be 

concluded that ANFIS performed better than 

its linear regression counterpart did as it had 

a better R2= 0.86 and RMSE=0.65 and 

SSE=10.86. A higher R2 for ANFIS also 

signified a stronger relationship between 

predicted values and the actual value and so 

a better predictor of yarn unevenness. It can 

be concluded that the ANFIS model for 

predicting yarn unevenness was successfully 

modeled.  

The inferior prediction of the linear 

model is due to the fact that it has 

assumptions which can’t govern some real 

life environments in the textile industry. The 

ANFIS model proved to be superior because 

it’s able to model inexact computational 

problems with various formations. Secondly, 

the utilization of the matlab code is beneficial 

because it can be easily integrated into other 

machine computer control programs. 
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