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ABSTRACT 

 

This study describes the application of intelligent control systems in color fast finish (CFF) 

process as well as to use these approaches for optimizing processing conditions. A multi-objective 

optimization method based on genetic algorithm (GA) has been proposed for the design and control 

of color fast finish process. The processing parameters including temperature of the pre-dryer, 

bath liquor pickup, machine speed and padder pressure were used as design variables and were 

mathematically related to the five quality characteristics; shade variation to the standard, color 

fastness to washing, center to selvedge variation, color fastness to light and fabric residual 

shrinkage using response surface methodology (RSM) technique. Nonlinear mathematical 

functions were derived based on the processing parameters. Afterward, using a multi-objective 

optimization technique based on genetic algorithm, optimal conditions were found in such a way 

that, mean color fast finish process parameters were optimized. 

 

Keywords: Response surface methodology, GA, Multi-objective optimization, Color fast finish, 

Textile industry 

 

1.0 Introduction 

 

Finishing in the narrow sense is the final 

step in the fabric manufacturing process. 

Finishing completes the fabric’s performance 

and gives it special functional properties 

including the final touch. The term finishing 

is also used in its broad sense: “Any operation 

for improving the appearance or usefulness 

of a fabric after it leaves the loom or the 

knitting machine can be considered as a 

finishing step” (Schindler & Hauser, 2004). 

The management of the finishing factory is 

very difficult, particularly because it is 

necessary to avoid long lead time, idle time, 

fabric quality and environmental issues. The 

goal is to implement better and efficient 

processing method than the time consuming 

conventional methods.  In fact, the cost of 

finishing treatment is so elevated, that it 
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represents 25.7% of the costs of materials 

textile preparation to get finished product. 

The expenses in energy and the water 

consumption represent 15 to 21% of the 

finishing cost (Rouette, 2000). So, two 

problems must be solved simultaneously in 

the textile finishing plants: minimization of 

time and energy cost (Kordoghli, Jmali, 

Saadallah, & Liouene, 2010). For tackling 

these problems, organization has to focus on 

identifying improved manufacturing 

methods with the safe environmental 

perspectives.

 

 

 
Figure 1. Conventional method of textile dyeing and finishing flow diagram 

 

Color fast finish (CFF) is a shortest textile 

dyeing and finishing process, which enables 

to do impregnation, drying and curing in a 

straight forward single operation. In the 

traditional method of dyeing cotton, 

polyester (PES) and PES/cotton blend have 

to be dyed separately before going to 

finishing (Figure 1). Now, with CFF, this can 

all be done in single step (Figure 2). The 

innovative CFF process is much faster than 

the conventional procedure (BASF, 2012; 

COLOR-PROFI, 2004). It will save time and 

energy - which allows you to reduce the 

overall process costs: less energy, less 

equipment needed and reduced staff costs. 

The fact that the total conventional process 

can be considerably shortened by the CFF 

provides not only economic benefits, but also 

considerable ecological benefits: (i) reduced 

energy consumption, (ii) reduced water use 

and subsequent wastewater load and (iii) 

Reduction of CO2 emissions. However, color 

fast finish requires lot of attention in 

parameter study which yields robust and 

optimized process conditions.  

 

 
Figure 2. Color fast finish process flow diagram and schematic diagram 
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In this paper, a multi-objective optimization 

method, based on a posteriori technique and 

using genetic algorithm (GA), is proposed to 

obtain the optimal parameters in color fast 

finish processes for a robust process 

development. During the process 

development both the inputs and outputs of 

the process are studied. The purpose of these 

studies is to determine the significant process 

parameters for the multiple objectives 

environment. The goal of this development 

phase is to have a good understanding of the 

process and relationship of the parameters to 

attributes. The main objectives of this paper 

are to: 

 

 Develop the empirical relationship 

between the response and factors  

 Validate the relationship and significance 

of process parameters 

 Optimize the process parameters of CFF 

process using multiple objective genetic 

algorithm 

 

This paper is organized as follows: The 

literature review is presented followed by 

experimental setup, then methodology used 

for the study is discussed with a case of a 

textile company. A main experiment is 

proposed to select the optimal process 

parameters with the help of central composite 

design with analysis. The non-linear 

relationship between the factors and response 

is provided. The models are validated with 

the Anova, normal probability plots and t-

test. With the help of surface plot and contour 

plot the individual response models are 

studied. Then genetic algorithm based multi-

objective optimization is performed to find 

the pareto optimal solutions for considering 

all the five objectives simultaneously.  

 

2.0 Literature Review 

 

Design problems are generally a natural 

process to optimize the solution 

corresponding to specified requirements. The 

problem can be complex because there are 

many numbers of design variables and these 

design variables frequently interact with each 

other (Montgomery, 2005). To obtain the 

desired output values, it is essential to have a 

complete control over the relevant process 

parameters. Various prediction methods can 

be applied to define the desired output 

variables through developing mathematical 

models to specify the relationship between 

the input parameters and output variables. 

The response surface methodology (RSM) is 

helpful in developing a suitable 

approximation for the true functional 

relationship between the independent 

variables and the response variable that may 

characterize the nature of the process 

(Ravikumar, Krishnan, Ramalingam, & Balu, 

2006). In any optimization procedure, it is a 

crucial aspect to identify the output of chief 

importance, the so-called optimization 

objective or optimization criterion. In 

manufacturing processes, the most 

commonly used optimization criterion is 

specific cost. Sometimes, other criteria like 

color strength (Kuo, Chang, Su, & Fu, 2008), 

fiber properties - fiber diameter and its 

distribution (Nurwaha & Wang, 2012), 

dyeing machine scheduling time (Keith, 

Patrick, Hui, Yeung, & Frency, 1998) and 

mechanical properties of the textile fabric 

(Karthikeyan & Sztandera, 2010) have been 

used too. However, these single objective 

approaches have a limited value to the 

optimal processing conditions in textile 

processing, due to the complex nature of the 

textile finishing processes, where several 

different and contradictory objectives must 

be simultaneously optimized. Some multi-

objective approaches have been reported in 

parameters optimization (Guo, Wong, Leung, 

Fan, & Chan, 2006; Kordoghli, Jmali, 

Saadallah, & Liouene, 2010; Lv, Xiang, & 

Yang, 2011) but mainly they use a priori 

techniques, where the decision maker 

combines the different objectives into a 

scalar cost function. This actually makes the 

multi-objective problem to a single-objective 

prior to optimization (Veldhuizen, & 

Lamont, 2000). On the other hand, in the a 

posteriori techniques, the decision maker is 

presented with a set of non-dominated 

optimal candidate solutions and chooses from 
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that set. These solutions are optimal in the 

wide sense that no other solution in the search 

space is superior to them when all 

optimization objectives are simultaneously 

considered (Abbass, Sarker, & Newton, 

2001). They are also known as Pareto-

optimal solutions. Comparing citations by 

technique in the previous years; evidences 

the popularity of a posteriori techniques 

(Veldhuizen, & Lamont, 2000). In dealing 

with multi-objective optimization problems, 

classical optimization methods (weighted 

sum methods, goal programming, min-max 

methods, etc.) are not efficient, because they 

cannot find multiple solutions in a single run, 

thereby requiring them to be applied as many 

times as the number of desired Pareto-

optimal solutions. On the contrary, studies on 

evolutionary algorithms have shown that 

these methods can be efficiently used to 

eliminate most of the above-mentioned 

difficulties of classical methods (Soodamani 

& Liu, 2000).  

 

Genetic algorithms can be used to solve wide 

variety of problems in textiles right from 

production of textile fibers to apparel design 

and manufacturing. Amin, El-Geheni, El-

Hawary & El-Beali (2007) have reported 

detection of the spinning fault source from 

spectrograms by using genetic algorithm 

technique. GA was applied to extract fault 

source from the expert database. The expert 

database consists of spectrogram 

specification such as fault category, fault 

type, spectrogram shape, etc. Lin (2003) 

investigated the use of GA for searching 

weaving parameters for woven fabrics. A 

searching mechanism was developed to find 

the best combinations of warp and weft 

counts and yarn densities for fabric 

manufacturing, considering costs. This helps 

the designer to select appropriate 

combinations of these parameters to achieve 

the required weight of fabric at a pre-

controlled cost. Grundler & Rolich (2000) 

have developed an evolutionary algorithm 

(GA) for creating different weave patterns. 

Only the weave and yarn color were 

considered as attributes for fabric appearance 

and different patterns can be created by 

various combination of weave and color of 

warp and weft threads. Kandi & Tehran 

(2007) have proposed a color recipe 

prediction with the use of GA. It has been 

claimed that the developed method can do 

both spectro photometric and colorimetric 

color matching based on its fitness function. 

It has also been shown that the developed 

method is capable of decreasing the color 

difference under second illuminant and 

reduces metamerism problem by applying a 

fitness function based on the color 

differences under two illuminants. Patrick, 

Frency, & Keith (2000) have studied the 

application of GA on the roll planning of 

fabric spreading in apparel manufacturing. It 

was demonstrated that the use of GAs to 

optimize roll planning will result in reduced 

wastage in cutting and hence can reduce cost 

of apparel production. Keith, Patrick, Hui, 

Yeung & Frency (1998) have investigated the 

problem of handling the assembly line 

balancing in the clothing industry. Results 

showed that the GA approach performs much 

better than the use of a greedy algorithm, 

which is used by many factories to tackle the 

assembly line balancing problem. Kuo, 

Chang, Su, & Fu, (2008) have aimed to find 

the optimal conditions for dyeing polyester 

(PET) and Lycra®-blended fabric and predict 

the quality characteristics, where PET and 

Lycra®-blended fabric were taken as raw 

material with dispersed dyes using a one-bath 

two-section dyeing method, characterizing 

the color strength of gray fabric. In their 

experimental design; machine working 

temperature, dyeing time, dye concentration, 

and bath ratio, which have an influence on 

dyeing, were chosen as control factors. It was 

found that the experimental results that color 

strength for gray fabric dyed under optimal 

conditions was closer to the target value. In 

addition, they constructed a prediction 

system based on the factors significantly 

influencing dyeing performance by a 

integrating genetic algorithm (GA), so as to 

predict color strength for gray fabric. Hence 

there is a disadvantage in that it is probable 

that only local optimal solutions are found 

instead of global optimal solutions. Wu & 

Chang (2003) have described the method and 
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procedure for optimizing a textile dyeing 

manufacturing process in response to the 

designated waste minimization alternatives, 

the new environmental regulations, and the 

limitations of production resources. The 

optimization steps concerning numerous 

screening and sequencing combinations of 

those waste minimization alternatives along 

the timeline are, therefore, treated as an 

integral part of the optimal production-

planning program under uncertainty. Facing 

the challenge of dealing with the numerous 

nonlinear constraints and integer variables in 

the optimization steps, genetic algorithm is 

applied as a means in the solution procedure 

to aid in finding the optimal decision. The 

case study, illustrated the applicability and 

suitability of this methodology in a textile 

dyeing firm. Nurwaha & Wang (2012) have 

described the application of intelligent 

control systems in electro-spinning 

engineering as well as to use these 

approaches for optimizing processing 

conditions. A multi-objective optimization 

method based on gene algorithm (GA) has 

been proposed for the design and control of 

electro-spinning process. The processing 

parameters including Polyvinyl alcohol 

(PVA) solution concentration, applied 

voltage, spinning distance and volume flow 

rate were used as design variables and were 

mathematically related with the electro-spun 

fiber properties (fiber diameter and its 

distribution) using gene expression 

programming (GEP) technique. Nonlinear 

mathematical functions were derived based 

on the processing parameters. Afterward, 

using a multi-objective optimization 

technique based on gene algorithm, optimal 

conditions were found in such a way that, 

mean electro-spun fiber diameter and its 

distribution to be minimized. Guo, Wong, 

Leung, Fan, & Chan (2006) have investigated 

a multi-objective scheduling problem of the 

multi- and mixed-model apparel assembly 

line (MMAAL). A bi-level genetic algorithm 

was developed to solve the scheduling 

problem, in which a new chromosome 

representation is proposed to represent the 

flexible operation assignment including 

assigning one operation to multiple 

workstations as well as assigning multiple 

operations to one workstation. The proposed 

algorithm was validated using real-world 

production data and the experimental results 

in textile finishing house shown that the 

proposed algorithm can solve the proposed 

scheduling problem effectively. Kordoghli, 

Jmali, Saadallah, & Liouene (2010) have 

tried to attain inferior cost by optimization of 

the scheduling of resources in textile 

finishing plant using genetic algorithms. This 

work was divided in two steps. In the first 

one, they studied the times of production 

process in order to show the difference 

between the predicted time and the real time 

of finishing process. In second one, they have 

set up a program for scheduling jobs using 

multi-objective genetic algorithm. 

 

The literatures show that genetic algorithm 

have been applied in different textile process 

from production of fibers to apparel design 

and manufacturing. Some studies in the 

literature are about optimizing textile 

finishing process and its quality 

characteristics. This study proposes an 

experimental design with the multi-objective 

optimization method, based on a posteriori 

techniques to innovative textile dyeing and 

finishing process called color fast finish.  

 

3.0 Experimental Method 

 

Commercially available 100% cotton 

fabrics, sort no: 1846 (20s cotton × 20s cotton 

108 × 56 3/1 Drill) and shade: Royal blue. 

BASF color fast finishing system (PAD N 

colorants and finishing recipe) was employed 

as suggested by the BASF manual. 
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Problem statement and objectives 

Developing the experimental design 

matrix 

Analysis of results and development of 

mathematical model 

Validation of the developed model 

Development of non-linear regression 

model using the software package 
 

Selecting suitable software 

package and analyzing results for 

model validation. Anova and 

Normal plot to identify significant 

factor and interactions. 

 

Identify the responses of the process  

Identify the process parameters or 

factors 

Find upper and lower limits (levels) 

for process parameters 

Conducting experiments 
Using Buckner POWER-FRAME 

ECO generation stenter machine 

Results 

satisfied

? 
Yes 

No 

Selection of layout for experimental 

runs ( fractional factorial design) 

Selection of process parameters 

based on expert’s experience and 

process knowledge  

 
Selection of process parameters 

levels based on the process 

knowledge (practical and theoretical 

understanding), manufacturer 

manual and trail runs  

Selection of responses based on the 

application of interest  

Selection of design matrix for 

experimental runs (Central 

composite design) 

Solving the optimization model using multi-

objective genetic algorithm 

Formation of multi-objective optimization model 

 

Finding of optimal pareto solutions 

 

Optimization model 

construction; five responses as 

objective functions and four 

factor levels as bonded 

constrains 

By using elitist genetic algorithm 

Figure 3. Methodology flow chart 
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Buckner POWER-FRAME ECO generation 

stenter machine was used for the color fast 

finish process. The machine equipped with 

left, middle and right adjustable squeezing 

rollers, chemical trough, SPLIT-FLOW hot 

air circulation system and seven drying 

chamber with the automatic heat setting 

feature. Order of mixing of the bath (bath 

liquor) components (Color fast finish 

chemicals) is critical and should be poured 

according to the sequence. The ingredients 

should not be mixed in their concentrated 

form. Although the PAD N colorants could 

be pre-mixed, diluted with water and strained 

prior to addition. Fabrics to be dyed with the 

color fast finish system should be properly 

prepared; they should be dried uniformly 

before they are padded. Padding is carried out 

at room temperature on a two bowl padder 

with left, middle and right adjustment. 

Padder pressure setting can be varied from 

10-70 N / mm. In the two bowl padder, top 

roll of 65 shore A hardness and bottom roll of 

75 shore A hardness will give best results. 

Padding is carried out at a cloth speed of 5-

100 m / min.  The bath liquor should be fed 

continuously from a storage tank so as to 

maintain a constant level of the trough. 

Unless the liquor is being re-circulated, it 

should be stirred in the storage tank with a 

paddle or mixture every 15-20 minutes. The 

fabric leaving the padder ideally should be 

between 40-80% wet pick-up, depending 

upon the type and construction of the fabric. 

The fabric should then enter a stenter 

machine for curing and for obtaining desired 

width. Curing for 1.5 minutes at 175oC is 

ample. The schematic view of color fast 

finish process was shown in Figure 2.  

 

4.0 Methodology 

 

The proposed methodology is given as a 

flow chat (Figure 3), which starts from 

problem formulation. Then model 

development phase followed by validation of 

the model, and multiple objective 

optimization is given, the proposed 

systematic approach is as follows:  

 

4.1 Development of Mathematical Model 

 

Five important response functions for 

color fast finish are shade variation to the 

standard (CVS), color fastness to washing 

(CFW), center to selvedge variation (CSV), 

color fastness to light (CFL) and fabric 

residual shrinkage (SHR).  

 

Table 1. Responses for color fast finish process 

S. 

No 
Responses  Explanation Standard 

Unit of 

measuremen

t 

1 
Shade variation to the 

standard (CVS) 

Shade variation of the sample 

fabric to the standard 

reference  

CIE Lab 

1976 
∆E 

2 
Color fastness to 

washing (CFW)  

Shade change of the sample 

fabric after detergent washing   
AATCC 61 Grey scale  

3 
Center to selvedge 

variation (CSV)  

Shade variation across the 

width of the fabric  

CIE Lab 

1976 
∆E  

4 
Color fastness to light 

(CFL) 

Shade change of the sample 

fabric after exposing the 

sample to sun or xenon light   

ISO 105 

B02 

Blue wool 

scale  

5 
Fabric residual 

shrinkage (SHR) 

Fabric shrinkage after 

detergent washing  

ISO 5077 / 

ISO 6330 
mm 

 

Table 1 shows the information about the 

responses of color fast finish and its 

measurement system. Selection of the 

process parameters were based on expert’s 

experience and process knowledge. The 

selected four factors are temperature of the 



 

Article Designation: Refereed                       8 JTATM 

Volume 8, Issue 3, Winter 2013 

pre-dryer (Tp), bath liquor pickup (B), 

machine speed (V) and padder pressure (P). 

The selection of process parameter’s levels 

was based on the process knowledge 

(practical and theoretical), manufacturer 

manual, trail runs, book readings and 

literature review. In this main experiment 

plan, Table 2 shows the levels of the four 

selected factors.  

 

Table 2. Details of factor levels 

S. No Factors 
Unit of 

measurement 

Star 

-2 

(coded) 

Low  

-1 

(coded) 

Centre 

0 

(coded) 

High  

+1 

(coded) 

Star 

+2 

(coded) 

1 
Temperature of pre-

dryer (Tp) 
oC 

450 
475 

500 
525 

550 

2 Bath liquor pickup (B) % 40 45 50 55 60 

3 Machine speed (V) m / min 20 25 30 35 40 

4 Padder pressure (P) N / mm 40 45 50 55 60 

 

A central composite design is used to explore 

the effect of four selected factors. The central 

composite design of 30 runs is especially 

useful for finding quadratic effects. This 

rotatable central composite design was run as 

24 factorial design, preferably with 6 center 

points and 6 axial points of star design. The 

selection of   depend on k, the number of 

factors being studied. For this four factor 

design, the value of   is taken as 2 (Box, 

Hunter, & Hunter, 2005; Cochran, & Cox, 

1957). The relationship between the natural 

value of the factors and coded value of the 

factors is 















F

FF
F CenterNatNat

CodedNat

  ; NatF  is the natural (actual) value of a factor, CenterNatF   

 

is the middle (center) value of a factor and 

F is the increment value of a factor. The 

experiments are performed in random order. 

The responses investigated were measured as 

per design layout, averaged and tabulated in 

Table 3. The results are analyzed using 

software Design Expert 8.0. 

 

Table 3. Experimental design matrix and results (Central composite design 42 with center 

and start points) 

Standar

d 

 order 

Run  

orde

r 

Factors 

(Coded) 

Factors (Actual / 

Natural) 
Responses  

T

p 
B V P Tp B V P 

CV

S 

CF

W 

CS

V 

CF

L 

SH

R 

1 23 
-1 

-
1 

-
1 

-
1 

475 45 25 45 
0.3

3 
3.33 

0.1

7 

4.6

7 
14 

2 29 
1 

-
1 

-
1 

-
1 

525 45 25 45 
0.6

1 
4.17 0.4 

6.3

3 
3 

3 6 
-1 1 

-
1 

-
1 

475 55 25 45 
0.3

1 
3.33 

0.1

5 
5 6 

4 7 
1 1 

-
1 

-
1 

525 55 25 45 
0.6

1 
3.83 

0.3

9 
5.5 7 

5 16 
-1 

-
1 1 

-
1 

475 45 35 45 
0.3

5 
3.17 

0.1

9 

4.3

3 
15 

6 15 
1 

-
1 1 

-
1 

525 45 35 45 
0.6

4 
3.83 

0.4

1 
5.5 6 
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7 4 
-1 1 1 

-
1 

475 55 35 45 
0.3

5 
3.67 

0.1

8 

5.3

3 
8 

8 5 
1 1 1 

-
1 

525 55 35 45 
0.6

2 
3.67 0.4 

5.3

3 
7 

9 11 
-1 

-
1 

-
1 1 

475 45 25 55 
0.1

8 
3.5 

0.0

5 

4.6

7 
10 

10 13 
1 

-
1 

-
1 1 

525 45 25 55 
0.4

7 
4.17 

0.2

8 

6.3

3 
0 

11 27 
-1 1 

-
1 1 

475 55 25 55 
0.2

4 
3.83 0.1 

5.6

7 
4 

12 17 
1 1 

-
1 1 

525 55 25 55 
0.5

2 
4 

0.3

2 
6 3 

13 25 
-1 

-
1 1 1 

475 45 35 55 0.3 3.33 
0.1

4 
4.5 14 

14 21 
1 

-
1 1 1 

525 45 35 55 
0.5

6 
3.67 

0.3

5 

5.8

3 
4 

15 3 
-1 1 1 1 

475 55 35 55 
0.3

5 
3.83 

0.1

8 

6.8

3 
7 

16 10 
1 1 1 1 

525 55 35 55 
0.5

9 
3.83 

0.3

8 

6.6

7 
5 

17 22 
-2 0 0 0 

450 50 30 50 
0.3

1 
3.83 

0.1

6 

6.8

3 
9 

18 24 
2 0 0 0 

550 50 30 50 
0.8

7 
4.83 0.6 

7.6

7 
0 

19 9 
0 

-
2 0 0 

500 40 30 50 
0.3

7 
2.83 0.2 3.5 10 

20 1 
0 2 0 0 

500 60 30 50 
0.4

2 
3.33 

0.2

4 

4.3

3 
6 

21 14 
0 0 

-
2 0 

500 50 20 50 
0.3

3 
4.5 

0.1

7 
7 5 

22 30 
0 0 2 0 

500 50 40 50 
0.4

6 
4.33 

0.2

7 

6.6

7 
11 

23 28 
0 0 0 

-
2 

500 50 30 40 
0.4

4 
2.83 

0.2

6 

3.6

7 
9 

24 19 
0 0 0 2 

500 50 30 60 0.3 3.17 
0.1

4 

4.3

3 
5 

25 26 
0 0 0 0 

500 50 30 50 
0.4

6 
4.33 

0.2

7 
6.5 12 

26 20 
0 0 0 0 

500 50 30 50 
0.4

6 
3.67 

0.2

7 
5.5 11 

27 12 
0 0 0 0 

500 50 30 50 
0.4

6 
3.83 

0.2

7 

5.6

7 
11 

28 8 
0 0 0 0 

500 50 30 50 
0.4

6 
3.83 

0.2

7 
5.5 11 

29 2 
0 0 0 0 

500 50 30 50 
0.4

6 
3.83 

0.2

7 
5.5 11 

30 18 
0 0 0 0 

500 50 30 50 
0.4

2 
3.83 

0.2

9 
5.5 11 

* For example standard order 1: CVS 0.33 [(0.28+0.33+0.38)/3]; CFW 3.33 [(3.5 + 3+ ‘3-5~3.5’)/3]; CSV 

0.17 [(0.13+0.21+0.17)/3]; CFL 4.67 [(4 + 5 + 5)/3]; SHR 14 [(12 + 14 + 16)/3]  
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For the response function and for four factors, the selected polynomial could be expressed as: 

 
       

           2

44

2

33

2

22

2

11342423

13121243210

)(

)()()(

PbVbBbTbPVbPBbVBb

PTbVTbBTbPbVbBbTb bR  CFL or SH or CVS orCVS or CFW

p

pppp



  (1) 

 

All the coefficients of Equation 1 are 

obtained applying central composite design 

using the Design Expert 8.0 statistical 

software package. After determining the 

coefficients, the final model is developed 

using these coefficients. The response ‘color 

variation to the standard’ of the fabric in 

actual form [Article no: 1846 (20s cotton × 

20s cotton 108 × 56 3/1 Drill) and shade: 

Royal blue] is: 

 

  P

 V B T PV. P B . V B 

 P Tp V T.B T P. V. B. T CVS 

p

pp

-

p

24

242425445

553

1071.8

1021.61021.61052.5  10756102551050.2

1050.3105041050.103003005005.063.7












      (2) 

 

The actual response models of the other responses are given in the Equation 3 to 6.The Equations are: 

 

  P V

 B T P V P B  V  B 

 P Tp V TB TP. V . B T. CFW 

p

ppp

2323

2324533

443

1062.81078.5

1072.81002.21025.61086.11031.2

1063.11083.41013.1 84024029.112057.20












     (3) 

 

  P V

 B T P V P B  V  B 

 P Tp V TB T. P. V. B T CSV 

p
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-

p

2424
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1022.51031.41090.5107.41000.3

1080.11060.21000203002003.004.058.6
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  P.V.

 B T P V P B  V  B 

 P  TV TB TP V  B T CFL 

p

pppp

22
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443

020 020

02.01005.41025.11072.31063.4

1024.31065.91026.2 73.147.058.223.013.43











     (5) 

 

  P. V.

 B. T P V P B  V  B 

 P  TV TBTP V  B T SHR 

p

----

p

-

p

-

p

-

p

22

223333

333

040030

0301063.21002.01001.21014.8

1055.11024.1 10 02.0 06.409.264.575.163.385






     (6) 

 

Where; Tp, B, V and P are actual levels of the 

factors. The value for Tp is between 300oC to 

500 oC. Similarly the other factor’s value is 

taken from maximum and minimum actual 

levels. Entire coefficients of Equation 2 are 

tested for their significance at 95% 

confidence level applying t-test using Design 

Expert 8.0 software and Microsoft Excel 

2007 package. 

 

Table 4. Significance of coefficients for the response model CVS 

Factor Coefficients 
Coefficient  

estimate 
df 

Standard 

error 

Lower 

bound 

95% CI  

Upper 

bound 

95% CI 

t - 

value 
p > |t| 

Intercep

t 
bo 

7.630000 1 0.0047 7.619919 7.640082 

1623.4

0 
< 

0.0000 

*Tp b1 
-0.050000 1 0.0024 

-

0.055148 -0.044852 58.87 
< 

0.0000 

*B b2 0.050000 1 0.0024 0.044852 0.055148 4.42 0.0004 
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*V b3 
0.030000 1 0.0024 0.024852 0.035148 13.26 

< 

0.0000 

*P b4 
0.050000 1 0.0024 0.044852 0.055148 -15.73 

< 

0.0000 

Tp × B b12 
-0.000015 1 0.0029 

-

0.006235 0.006206 -0.65 0.5252 

Tp × V b13 
-0.000045 1 0.0029 

-

0.006266 0.006176 -1.95 0.0691 

Tp × P b14 
-0.000035 1 0.0029 

-

0.006256 0.006186 -1.52 0.1491 

B × V b23 
-0.000025 1 0.0029 

-

0.006246 0.006196 -0.22 0.8313 

*B × P b24 
0.000525 1 0.0029 

-

0.005696 0.006746 4.55 0.0003 

*V × P b34 
0.000675 1 0.0029 

-

0.005546 0.006896 5.85 
< 

0.0000 

*Tp
2 b11 

0.000055 1 0.0022 

-

0.004664 0.004774 15.64 
< 

0.0000 

*B2 b22 
-0.000621 1 0.0022 

-

0.005340 0.004098 -7.04 
< 

0.0000 

*V2 b33 
-0.000621 1 0.0022 

-

0.005340 0.004098 -7.04 
< 

0.0000 

*P2 b44 
-0.000871 1 0.0022 

-

0.005590 0.003848 -9.87 
< 

0.0000 

* Significant factor coefficients 

 

Table 4 shows the significant coefficients for 

the response model CVS. The coefficients of 

the parameters temperature of the pre-dryer 

(Tp and Tp
2), bath liquor pickup (B and B2), 

machine speed (V and V2), padder pressure 

(P and P2) and interactions - (B × P) and (V × 

P) are significant in t-test. After determining 

the significant coefficients, the confidence 

interval and standard error of the Equation 2 

are also tabulated. Similarly remaining 

responses CFW, CSV, CFL and SHR could 

be studied. Then the model reduction could 

be possible. The reduced models of color fast 

finish responses are (at 95% confidence 

level):   

 

  P V B T

 PV. P B . P. V. B. T CVS 

p

p

24242425

44

1071.81021.61021.61052.5

  107561025503003005005.063.7







    (2a) 
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    (3a) 

 

  P V B T P V
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p

pp

242424254

45
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107.41060.203002003.004.058.6







    (4a) 

 

  P.V. B

 TB TP V  B T CFL ppp
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020 02002.0
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     (5a) 
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-

p

-

p
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4.1.1 Model adequacy check 

 

Anova has been used to summarize the test 

for significance of regression model, test for 

significance for individual model coefficient 

and test for lack-of-fit. Summary output 

revealed that quadratic model is statistically 

significant for response at the two different 

conditions. Significant model terms were 

identified at 95% significance level 

Goodness of fit was evaluated from R2 

(Coefficient of Correlation) and CV 

(Coefficient of Variation) in order to check 

the reliability and precision of the model. 

Degrees of Freedom (df) mean the number of 

values that can vary independently of one 

another. The adequacy of the developed CVS 

model (Equation 2) was tested using the 

analysis of variance (anova) technique and 

the results are given in Table 5.   

 

 

Table 5. Anova result for CVS (df is degrees of freedom; F is Fisher’s ratio; p is probability) 

Source Sum of squares df Mean square F value p-value (Probability > F) 

Model 0.596821 14 0.04263 319.7276 < 0.0001 significant 

*Tp 0.462037 1 0.462037 3465.3 < 0.0001  

*B 0.002604 1 0.002604 19.53131 0.0005  

*V 0.023437 1 0.023437 175.7821 < 0.0001  

*P 0.033004 1 0.033004 247.5328 < 0.0001  

Tp × B 5.62 × 10-05 1 5.62 × 10-05 0.421868 0.5258  

Tp × V 0.000506 1 0.000506 3.796868 0.0703  

Tp × P 0.000306 1 0.000306 2.296866 0.1504  

B × V 6.25 × 10-06 1 6.25 × 10-06 0.046872 0.8315  

*B × P 0.002756 1 0.002756 20.67206 0.0004  

*V × P 0.004556 1 0.004556 34.17215 < 0.0001  

*Tp
2 0.032608 1 0.032608 244.5594 < 0.0001  

*B2 0.006607 1 0.006607 49.55508 < 0.0001  

*V2 0.006607 1 0.006607 49.55508 < 0.0001  

*P2 0.013 1 0.013 97.50137 < 0.0001  

Residual 0.002 15 0.000133    

Lack of Fit 0.000667 10 6.67 × 10-05 0.250008 0.9703 not significant 

Pure Error 0.001333 5 0.000267    

Corrected total 0.598821 29         

Std. Dev. 0.011547  R2 0.99666   

Mean 0.442  Adjusted R2 0.99354   

C.V. % 2.612438  Predicted R2 0.990381   

PRESS 0.00576   Adequacy Precision 83.89525     

* Significant factor 

 

The probability > F for the model in (Table 

5) is less than 0.05 which indicates that the 

model is significant, which is desirable as it 

indicates that the terms in the model have a 

significant effect on the response. In this case 

Tp, Tp
2, B, B2, V, V2, P, P2, B × P and V × P 

are significant model terms. Model fitting 

with the help of Design-Expert software 

suggested that a quadratic model provided 

the best fit, and the model was found to have 

insignificant lack of fit. This was desirable as 

we wanted a model that fit. The ANOVA 

table for the quadratic model indicated that 

the model was significant at p < 0.0001, and 

it’s Lack of fit, 0.97 was not significant. The 

R2 value was high, close to one, which was 

desirable. 95% of R2 explains that this much 

percentage of the variability of result. The 
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predicted R2 value was in reasonable 

agreement with the adjusted R2. Adequate 

precision measures signal to noise ratio was 

computed by dividing the difference between 

the maximum predicted response and the 

minimum predicted response by the average 

standard deviation of all predicted responses. 

Ratios greater than 4 are desirable. In this 

particular case the value was 83.9 which were 

well above 4, which indicated adequate 

signals to use this model to navigate the 

design space. PRESS stands for ‘Prediction 

Error Sum of Squares’ and it is a measure of 

how well the model for the experiment is 

likely to predict the responses in new 

experiments. Small values of PRESS are 

desirable. In this case the value was 0.0058. 

Similarly significant factors on the responses 

“color fastness to washing” (CFW), “centre 

to selvedge variation” (CSV), “color fastness 

to light” (CFL) and “fabric residual 

shrinkage” (SHR) could be tabulated and 

studied. Normal probability plot was a 

method to find out the significant residual 

among all the residuals involved in the 

experiment. The negligible residual effects 

are normally distributed, with mean 0 and 

variance
2 . These effects would tend to fall 

along a straight line on this plot. Where as 

significant residual effects would have non 

zero mean and would not lie along the 

straight line (Box, Hunter, & Hunter, 2005; 

Cochran, & Cox, 1957).The normal 

probability plot of the residuals for shade 

variation to the standard was shown in Figure 

4 reveals that the residuals were falling on a 

straight line, which means the errors were 

distributed normally. Similarly for other 

responses residuals could be studied by 

plotting their normal probability plots.  

 

 
Figure 4. Normal probability plot effects of residuals for CVS 

 

4.2 Response Surface Optimization 

 

In the present investigation the process 

parameters corresponding to the minimum 

CVS is considered as optimum (analyzing the 

contour graphs and by solving Equation 2). 

Hence, when these optimized process 

parameters are used, it will be possible to 

attain the minimum shade variation to the 

standard.  Figure 5 presents three-

dimensional surface plots for the response 

CVS, obtained from the regression model. 

The optimum CVS is exhibited by the corners 

of the response surface plots. Contour plots 

play a very important role in the study of the 

response surface analysis, was generated 

using software Design Expert 8.0. The 

optimum is identified with reasonable 

accuracy by characterizing the shape of the 

surface. If a contour patterning of circular-
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shaped contours occurs, it tends to suggest 

independence of factor effects, whereas 

elliptical contours may indicate factor 

interactions (Box, Hunter, & Hunter, 2005). 

Figure 6 (a) to 6 (d) exhibits an almost curved 

lines and circular-shaped contour, which 

suggests independence of factor. Where as 

Figure 6 (e) and 6 (f) shows an almost 

elliptical contour, which suggests 

dependence of factors. It is relatively easy to 

see, by examining the contour plots in 

Figures 6 (a) to 6 (f), that changes in the 

shade variation to the standard are more 

sensitive to changes in temperature of the 

pre-dryer than to bath liquor pickup, machine 

speed and padder pressure. When 

temperature of the pre-dryer is compared 

with bath liquor pickup at a machine speed 20 

m /min and padder pressure 50 N / mm, 

temperature of the pre-dryer is more sensitive 

to changes in shade variation to the standard, 

as illustrated in contour plot Figure 6 (a). 

Similar effects (high sensitive temperature of 

the pre-dryer) are observed in Figure 6 (b) 

and 6 (c). The interaction effect between bath 

liquor pickup and padder pressure, machine 

speed and padder pressure is more significant 

than the interaction effect between other 

combinations of parameters. Minimum shade 

variation to the standard is estimated from the 

response surface and contour plots is 0.0144 

∆E, which is given by the following 

optimized process parameters: temperature 

of pre-dryer 475.60 oC, bath liquor pickup 

42.29 %, machine speed 21.85 m / min and 

padder pressure 57.87 N / mm. 

 

 
(a)      (b) 

 
(c) (d) 
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(e)      (f) 

Figure 5. Surface plots of response CVS against the factor Tp × B, Tp × V, Tp × P, B × V, B × 

P and V × P 

   
(a)      (b) 

 
(c) (d) 
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(e)        (f) 

Figure 6.  Contour plots of response CVS against the factor Tp × B, Tp × V, Tp × P, B × V, B 

× P and V × P 

The above values were also verified using 

statistical software Minitab 15. The 

corresponding optimization plot is depicted 

in Figure 7. A confirmatory experiment was 

run using the optimum parameters (listed 

above) and shade variation to the standard of 

a sample [1846 (20s cotton × 20s cotton 108 

× 56 3/1 Drill) and shade: Royal blue] was 

found to be 0.02 ∆E, which shows excellent 

agreement with the predicted values. 

Similarly other responses (CFW, CSV, CFL 

and SHR) are studied for individual 

optimized parameter settings and response 

value. The same was displayed in Table 6.  

 

 

 

 

 

Table 6. Optimum parameter values of individual responses 

Factor / Response 
Optimum parameter value 

Optimum response value 
Tp B V P 

CVS 475.60 42.29 21.85 57.87 0.01 

CFW 548.31 44.92 23.07 45.50 5.12 

CSV 488.32 41.53 24.48 57.27 3.30 × 10-04 

CFL 540.70 49.12 20.72 49.77 8.67 

SHR 525.16 51.19 23.61 56.88 5.86 × 10-07 

 

But in practical case more responses needs to 

be considered simultaneously, this kind of 

sub optimized parameter setting of individual 

response will not yield optimum results for 

other parameters.  
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Figure 7.  Optimization plot of individual response of CVS 

 

Multi objective optimization deals with 

solving problems having not only one, but 

multiple, often conflicting, criteria. Such 

problems can arise in practically every field 

of science, engineering and business, and the 

need for efficient and reliable solution 

methods is increasing. The task is 

challenging due to the fact that, instead of a 

single optimal solution, multi objective 

optimization results in a number of solutions 

with different trade-offs among criteria, also 

known as Pareto optimal or efficient 

solutions. 

 

4.3 Multi-objective Optimization 

 

Multi-objective optimization is the process of 

simultaneously optimizing two or more 

conflicting objectives subject to certain 

constraints. For nontrivial multi-objective 

problems, such as minimizing color 

variations and maximizing the color fastness, 

it is difficult to identify a single solution that 

simultaneously optimizes each objective. 

While searching for solutions, one reaches 

points where upon an attempt to improve an 

objective further deteriorates the second 

objectives. A tentative solution during such 

cases is called non-dominated pareto optimal, 

if it cannot be eliminated by replacing it with 

another solution which improves an objective 

without worsening the other. The main 

objective when setting up and solving a 

multi-objective optimization problem is to 

find such non-dominated solutions. 

Friedrich, Horobab, & Neumanna (2011) 

have performed runtime analyses and 

observed that a fair multi-objective 

evolutionary algorithm has a marked 

preference for accepting quick small 

improvements. This helps to find new 

solutions close to the current population 

quicker. Different types of multi objective 

GA developed for specific purpose differ 

from each other mainly by using specialized 

fitness functions and introducing methods to 

promote solution diversity. An elitist multi-

objective GA ensures that the best solution 

does not deteriorate in the succeeding 

generations. This approach uses a priority-

based encoding scheme for population 

initialization. Eiben & Smit (2011) have 

observed that adoption of parameter tuners 

would enable better evolutionary algorithm 

design. Using tuning algorithms one can 

obtain superior parameter values as well as 

information about problem instances, 

parameter values, and algorithm 

performance. This information can serve as 

empirical evidence to justify design 

decisions. Lianga & Leung (2011) have 

integrated GA with adaptive elitist-

population strategies for multimodal function 

optimization. Adaptive Elitist GA is shown to 

be very efficient and effective in finding 

multiple solutions of complicated benchmark 

and real-world multimodal optimization 

problems. Zio & Bazzo (2011) have proposed 

a clustering procedure for reducing the 

number of representative solutions in the 
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Pareto Front of multi-objective optimization 

problems. The procedure is then applied to a 

redundancy allocation problem. The results 

show that the reduction procedure makes it 

easier for the decision maker to select the 

final solution and allows him or her to discuss 

the outcomes of the optimization process on 

the basis of his or her assumed preferences. 

The clustering technique is shown to 

maintain the Pareto Front shape and relevant 

characteristics. Su & Hou (2008) have 

showed that the integrated multi population 

intelligent GA approach can generate the 

Pareto-optimal solutions for the decision 

maker to determine the optimal parameters to 

assure a stable process and product qualities 

in the nano-particle milling process. The 

chief advantage of GA when applied to solve 

multi-objective optimization problems is the 

computation of an approximation of the 

entire Pareto front in a single algorithm run. 

Thus, considering the advantages of elitist 

multi-objective GA for solving multi-

objective problems, it is applied to optimize 

the process of color fast finish. In this study, 

main objective is to find the optimal process 

parameter settings for the color fast finish 

responses. The responses; color variation to 

the standard, centre to selvedge and fabric 

residual shrinkage are to be minimized.  But 

in the other hand, the responses; color 

fastness to washing and color fastness to light 

are to be maximized.  The relationship 

between the process parameters and 

responses are obtained from response surface 

methodology (Equations 2 to 6) are taken as 

objective functions and given in the 

Equations 7 to 11. The maximum and 

minimum levels of the factors are taken as 

upper and lower bound constrains 

respectively (Equations 12 to 15).  

 

Objective functions: 

CVS Minimize         (7) 

CFW Maximize         (8) 

CSV Minimize         (9) 

CFL Maximize          (10) 

SHR Minimize          (11) 

 

Subjected to constrains: 

500            300  pT     (12) 

6040       B            (13) 

40      20     V        (14) 

60            40  P      (15) 

 

4.3.1 Genetic algorithm for color fast 

finish process 

 

GA is run in MATLAB R2012a for 

generating Pareto optimal solution points for 

minimizing CVS, CSV and SHR; 

maximizing CFW and CFL while finishing 

royal blue on sort no: 1846 (20s cotton × 20s 

cotton 108 × 56 3/1 Drill). Equations 7 to 11 

are used for creating the fitness function of 

the multi objective optimization and it is 

written in a ‘M’ file. During the formulation 

of fitness functions; both the maximization 

objectives (CFW and CFL) are converted to 

minimization objectives by multiplying a 

negative unity. The range of the process 

parameters (Equations 12 to 15) is placed as 

bounds on the four input control variables 

and the algorithm options are set in the Table 

7. 

 

Table 7. Genetic Algorithm Parameters  

Population type  Double vector 

Population size 100, 150, 200 and 300 

Selection function  Tournament size 2 

Crossover fraction 0.8 

Crossover function  Scattered 

Mutation function  Adaptive feasible 

Direction of migration  Forward with migration function 0.2 

Distance measure function Distance crowding 

Pareto front population fraction 0.35 

Stopping criteria generations Over 500 
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The variant of GA used to solve this multi-

objective optimization problem is a 

controlled elitist genetic algorithm (a variant 

of NSGA-II). Elitist GA favors individuals 

with better fitness value. A controlled elitist 

GA maintains the diversity of population for 

convergence to an optimal pareto front. 

Weighted average change in the fitness 

function value over 500 (200 × number of 

decision variables) generations is used as the 

criteria for stopping the algorithm. The initial 

population size is varied as 100, 150, 200 and 

300 for improving the solution of the 

problem, then the optimized pareto front 

achieved after 124, 103, 173 and 211 

iterations are shown in Figure 8. In Figure 8,  

the two conflicting responses of minimizing 

color variation to the standard and color 

fastness to washing are marked along x-axis 

and y-axis respectively. The individual star 

marks between these axes depict individual 

non dominated solution point among the 

pareto optimal set of all the star points which 

form the pareto front. The number of pareto 

solutions is getting increased from Figure 8 

(a) to 8 (d) substantially. This is because of 

increase in population size. Similarly other 

response combinations of pareto front can be 

studied. Input control parameters 

corresponding to the selected pareto optimal 

set of solutions are tabulated in Table 8.  

 

Table 8. GA predicted results of color fast finish 

Parameters Responses 

S.No Tp B V P CVS CFW CSV CFL SHR 

Population size 100 

1 484.80 45.62 20.18 52.50 0.19 -4.12 0.06 -6.23 6.53 

2 530.77 45.52 20.05 55.87 0.42 -4.85 0.23 -7.70 -6.05 

3 525.45 41.05 20.17 56.17 0.30 -4.23 0.14 -6.47 -7.73 

4 530.13 42.81 20.11 56.28 0.37 -4.58 0.19 -7.17 -8.20 

5 521.28 45.57 20.03 58.11 0.27 -4.33 0.11 -6.66 -5.28 

6 488.82 46.09 20.17 51.98 0.22 -4.22 0.09 -6.44 6.36 

Population size 150 

1 538.79 45.23 20.08 55.69 0.50 -5.10 0.29 -8.21 -9.00 

2 451.12 52.27 19.98 51.75 0.33 -4.54 0.17 -7.07 8.07 

3 532.66 45.13 20.07 55.85 0.43 -4.89 0.24 -7.77 -6.95 

4 490.30 45.69 20.09 54.24 0.17 -4.12 0.05 -6.23 4.71 

5 491.07 46.10 20.08 52.70 0.22 -4.24 0.08 -6.48 5.62 

6 461.06 53.08 39.86 54.56 0.34 -4.57 0.17 -7.14 7.20 

7 483.50 47.28 20.38 52.82 0.20 -4.20 0.06 -6.39 6.27 

Population size 200 

1 484.02 45.48 20.12 52.47 0.18 -4.10 0.06 -6.20 6.58 

2 519.99 43.55 20.17 57.43 0.26 -4.21 0.10 -6.41 -5.15 

3 500.57 45.01 20.11 54.06 0.23 -4.23 0.09 -6.46 3.24 

4 452.05 52.82 20.18 51.70 0.19 -4.12 0.07 -6.25 7.15 

5 525.01 43.06 20.03 54.54 0.37 -4.63 0.20 -7.25 -4.68 

6 526.27 42.05 20.08 58.52 0.25 -4.09 0.09 -6.18 -9.69 

7 508.47 44.33 20.10 52.07 0.32 -4.43 0.16 -6.86 2.67 

8 493.49 45.03 20.17 54.42 0.18 -4.08 0.05 -6.16 4.23 

Population size 300 

1 475.44 46.81 20.02 51.70 0.18 -4.17 0.05 -6.35 7.01 

2 476.48 47.24 20.27 51.26 0.19 -4.19 0.07 -6.37 7.27 

3 481.40 46.45 20.02 52.02 0.19 -4.18 0.06 -6.37 6.74 

4 519.49 44.49 20.14 56.13 0.30 -4.43 0.14 -6.86 -3.23 
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5 529.41 43.76 20.12 58.47 0.30 -4.36 0.14 -6.73 -9.42 

6 520.85 42.60 20.10 56.25 0.28 -4.28 0.13 -6.56 -4.97 

7 534.27 42.34 20.04 53.76 0.47 -4.92 0.27 -7.83 -8.20 

8 500.94 46.64 20.02 50.58 0.31 -4.47 0.16 -6.95 5.35 

9 451.09 51.51 20.17 52.67 0.15 -4.09 0.03 -6.18 0.08 

10 510.75 41.64 20.02 53.79 0.26 -4.12 0.11 -6.23 -0.39 

 

These pareto optimal solutions are filtered 

from the original pareto front (Figure 5) 

based on the requirement of the response. 

The requirements are given as follows. The 

response CVS is taken for consideration if it 

is less than 0.75 ∆E. In case of CFW, the 

minimum allowed value is grey scale 4. 

While considering the response CSV, the 

maximum limit is 0.3. For the response CFL, 

the minimum value of grey scale 4 is 

considered. A tolerance of ± 10mm is 

considered for the response SHR.  From the 

Table 8, it is observed that an improvement 

in minimizing color variation to the standard 

deteriorates the quality of color fastness to 

washing and vice versa. Thus, each solution 

point is a unique non dominated solution 

point. Similar inferences were observed also 

in the other response combination. 

 
(a)      (b) 

 
(c)       (d) 

Figure 8. Pareto-optimal set of solutions obtained for responses CVS and CFW at 

population size 100, 150, 200 and 300 

 

5.0 Results 

 

Central composite design is an efficient way, 

with a minimal number of runs, of 

determining the important factors and its 

quadratic effects. They may also be used as a 

first step when the ultimate goal is to model a 

response with a response surface. In this 

experimental design, four factors were 

studied. The experiments were conducted 

according to the layout of rotatable central 

composite design of 24 factorial design, 

preferably with 6 center points and 6 axial 

points and five response functions values are 

obtained then averaged. An empirical 

relationship was developed to predict the 

responses (CVS, CFW, CSV, CFL and SHR) 

of color fast finish on Article no: 1846 (20s 

cotton × 20s cotton 108 × 56 3/1 Drill) and 

shade: Royal blue at the 95 percent 

confidence level, incorporating color fast 

finish process parameters. From the estimates 
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of anova, normal probability plots and t-test 

the significance of all the factors effects, 

quadratic effects and interaction effects are 

ensured. Then the optimization mode was 

made; objective function as the relationship 

between the process parameters and 

responses which have been obtained from 

response surface methodology. The 

maximum and minimum levels of the factors 

are taken as upper and lower bound 

constrains respectively. A multi-objective 

optimization using genetic algorithm (GA) is 

proposed to obtain the optimal parameters in 

color fast finish processes. GA is run in 

MATLAB R2012a for generating Pareto 

optimal solution points. The solution 

obtained from GA is a set of pareto optimal 

points (Figure 5) where each point is non 

dominated. The observed responses were 

obtained in a single process parametric 

combination setting. Table 6 records the 

range of values for responses at different 

parametric combination with four different 

population size. From this pareto front based 

multi objective optimization, the following 

optimal parameters values are selected from 

the list of solution: temperature of the pre-

dryer (Tp) 451.1 oC, bath liquor pickup (B) 

51.51 %, machine speed (V) 20.17 m / min 

and padder pressure (P) 52.67 N / mm. The 

multiple responses value for the optimized 

conditions are: shade variation to the 

standard (CVS) 0.15 ∆E, color fastness to 

washing (CFW) 4.09 grey scale, center to 

selvedge variation (CSV) 0.03 ∆E, color 

fastness to light (CFL) 6.18 blue wool scale 

and fabric residual shrinkage (SHR) 0.08 

mm. It is observed that an increase in 

population size will increase in number of 

pareto optimal solution. If the pareto optimal 

solution increases then the solution space 

would be explored more and deep. If we 

increase the population size further besides 

the time constrains, still more optimum 

results are possible. From the response values 

as listed in Table 8, it is understood that an 

improvement in minimizing center to 

selvedge variation deteriorates the quality of 

fabric residual shrinkage and vice versa. 

Thus, each solution point is a unique non 

dominated solution point. Therefore, instead 

of a single solution point, a set of solution 

points are predicted for simultaneously 

optimizing both the responses. A change in 

the value of any one of the considered control 

parameters further improves any one of the 

responses at the cost of degrading the second 

response. In real life situations, as in this case 

of multi-objective optimization of color fast 

finish process, the responses are often 

conflict with each other. At such situations it 

is often difficult and at times impossible to 

predict a single solution point that optimizes 

all the responses simultaneously. Pareto 

optimal set of solution provides a novel 

approach for solving such problems. This 

result is helpful as it provides a wide range of 

optimal setting of control parameters for 

simultaneously optimizing both the 

responses. Hence, flexibility in the operation 

of the machine is achieved by presenting 

different parametric combinations for the 

range of predetermined desired responses. 

 

6.0 Discussion 

 

[1] In the color fast finish process, 

padder pressure decides the penetration level 

of color fast finish size into the core of the 

fabric to be finished. The optimum value of 

the padder pressure is 52.67 N / mm as per 

the optimization algorithm. More the padder 

pressure of stenter machine mangle; more the 

penetration takes place and vice versa. More 

penetration will bring the better color build-

up to the fabric being dyed. If the penetration 

is less then ‘core of the yarn’ of the fabric will 

not be dyed completely. Bath liquor pickup 

decides the application of required color fast 

finish size (inclusive of PAD N colorants and 

resins) to the fabric being dyed. More bath 

liquor pickup will yield to application of 

more color fast finish size to the fabric and 

vice versa. The lower padder pressure and 

more bath liquor pickup combine to cause 

poor core penetration of the CFF size and 

poor add on. The excessive impenetrate CFF 

size on the fabric surface will lead to 

unevenness in the dyeing. This combination 

results in poor shade build-up and causing 

more color variation compare to the standard. 

On the other hand, higher padder pressure 
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and lesser bath liquor pickup combine to 

cause better core penetration, better add on 

and no excessive size on the fabric surface. 

This condition results in better shade build-

up and causing minimized color variation 

compare to the standard and this evident from 

Figure 9 (a). Similar reasons could be 

explained for Figure 10 (a), higher padder 

pressure and lesser bath liquor pickup 

combine to cause minimized center to 

selvedge variation.

  

 
(a)       (b) 

Figure 9. Interaction between the factors (B × P) and (V × P) on response CVS 

 

 
(a)       (b) 

Figure 10. Interaction between the factors (B × P) and (V × P) on response CSV 

[2] Machine speed is another important 

parameter of color fast finish process, this 

will lead to ensure the required setting time 

of the color fast finish process. The optimum 

value of the machine speed suggested by the 

optimization algorithm is 20.17 m / min. 

Higher the machine speed of stenter machine; 

lesser the setting time and vice versa. If the 

setting time is lower then color fixation will 

be poor and results poor shade build-up. If the 

setting time is higher then it will provide 

good color fixation, proper setting and 

excellent shade build-up. The higher machine 

speed and lower padder pressure combine to 

cause poor core penetration and improper 

setting of PAD N colorants. This 

combination results in poor shade build-up 

and causing more color variation compare to 

the standard. On the other hand, lower 

machine speed and higher padder pressure 

combine to cause good core penetration and 

complete setting of the fabric. This condition 

results in good shade build-up and causing 

minimized color variation compare to the 

standard and this is clearly evident in Figure 

9 (b). The same reasons could be applicable 
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for Figure 10 (b), lower machine speed and 

higher padder pressure combine to cause 

minimized center to selvedge variation. 

 

  
(a)       (b) 

Figure 11. Interaction between the factors (Tp × B) on response CFW and (Tp × B) on 

response CFL 

 

[3] Temperature of the pre-dryer is a 

significant parameter to the color fast finish 

process that will pre heat the fabric to avoid 

the migration of the PAD N colorants, but it 

will cause pre setting of color fast finish size 

and affect the required shade build-up. The 

multi-objective genetic algorithm yields the 

optimum value of the temperature of the pre-

dryer, which is 451.1 oC. Higher the 

temperature of the pre-dryer; lower the 

migration effect with good pre setting effect 

and vice versa. The lower temperature of the 

pre-dryer and higher bath liquor pickup 

combine to cause migration effect, poor pre 

setting of the fabric and more moisture of the 

fabric. This combination results in poor 

setting of the fabric and causing low color 

fastness to washing. On the other hand, 

higher temperature of the pre-dryer and lower 

bath liquor pickup combine to cause 

complete setting of the fabric. This condition 

results in maximum color fastness to washing 

and this is clearly evident in Figure 11 (a). 

The same reasons could be applicable for 

Figure 11 (b), higher temperature of the pre-

dryer and lower bath liquor pickup combine 

to cause maximum color fastness to light.  

 

 
(a)       (b) 

Figure 12. Interaction between the factors (Tp × B) and (V × P) on response SHR 
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[4] In the color fast finish process, bath liquor 

pickup decides the application required color 

fast finish size (inclusive of PAD N colorants 

and resins). Bath liquor pickup 51.51 % is the 

optimum value obtained from the 

optimization results. More the bath liquor 

pickup; more the application of color fast 

finish size on the fabric and vice versa. Color 

fast finish size contains resin component. 

Resins are anti-shrinking agent. This will 

bring the fabric residual shrinkage under 

control. The higher bath liquor pickup and 

reduction in the temperature of the pre-dryer 

combine to cause increase cross linking 

between the fibers of the fabric. At very low 

temperature of the pre-dryer, excess cross 

linking occurs and fabric becomes very 

brittle. This combination results in low fabric 

residual shrinkage value or elongation of the 

fabric after washing. On the other hand, 

lower bath liquor pickup and increase in the 

temperature of the pre-dryer combine to 

cause higher degree of linkage between the 

fibers of the fabric. At very high temperature 

of the pre-dryer, excess cross linking occurs 

and fabric becomes very brittle. So both of 

these condition results in excess shrinkage 

fabric residual shrinkage and clearly seen 

from Figure 12 (a). The lower machine speed 

and higher padder pressure combine to cause 

good core penetration of resin and complete 

setting of the fabric. This condition results in 

good cross linking between the fibers of the 

fabric and causing perfect shrinkage 

controlled fabric (either shrink, or 

elongation) and this is clearly evident in 

Figure 12 (b).  

 

7.0 Conclusions 

 

In this paper, the application of response 

surface methodology from the point of view 

of color fast finish is discussed. The 

methodology integrates process modeling, 

employed to fit an appropriate models from 

experimental data, regression analysis and 

multi-objective optimization. The developed 

model is limited with its boundary conditions 

and is non-transferable. This means that it is 

only valid for the considered color fast finish 

recipe and its experimental setup 

combination. The development of response 

surface model has been founded on central 

composite design of experiments with five 

factor levels. The run size of the central 

composite design is not so large that it would 

incur unnecessary experimental expenses. 

Moreover, the design allows sequential 

model development of increasing order, an 

estimate of experimental error and relative 

insensitivity to errors in control of design 

levels. Consistent testing for model (Table 5) 

lack of fit has been pointed out in a very least 

value, because it would require more real 

experimental replicates, which are not just 

repeated measurements. The replicates on the 

response at the particular experimental run 

are useful and have to be included in 

experimentation. The developed full model 

includes some interaction terms that are not 

significant. Advanced modeling would, 

therefore include model reduction and 

elimination of terms that are not significant in 

the way that statistical hierarchy is not 

violated. The model reduction is either step-

wise or it follows backward or forward 

elimination. The analysis of variance proved 

that the temperature of the pre-dryer most 

significantly affects the color variation to the 

standard. The color variation to the standard 

is additionally affected by the machine speed, 

bath liquor pickup and the padder pressure. 

This was not the case in conventional dyeing, 

where the time, pH and temperature factors 

predominate. The experimental optimization 

of the response surface model is an iterative 

process. The experiments conducted in one 

set of experiments result in fitted model that 

indicate where to search for improved 

operating conditions in the next set of 

experiments. Thus, the coefficients in the 

fitted model may change during the 

optimization process. The response model 

contains random variability due to 

uncontrollable or unknown complexities. 

This implies that an experiment, if repeated 

more, will result in a different fitted response 

surface model that might lead to different 

optimal operating conditions. The presented 

approach solved the optimization problem in 
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a perfect way; hence it is appropriate for 

application. Moreover, multi-objective 

genetic algorithm techniques are very 

convenient for simple multi-objective 

optimization to more complicated multi-

objective optimization (more than three 

objectives), which is necessary for further 

process improvement. In this way the 

physical quality characteristics, color 

matching recipe and environmental benefits 

have to be included in the optimization 

problem formulation and our future research 

activities. This is especially important in 

color fast finish process. Since this 

experimental study is a more generic 

procedure, it could be deployed to the other 

value chain of the textile process. The value 

chain elements: ginning, spinning, sizing, 

weaving, knitting and garmenting are 

suitable to implement optimized process by 

considering more than one objective 

simultaneously. But care should be given to 

the process responses and process parameters 

selection according the field of interest. For 

spinning operation: twist, linear density of 

yarn and elongation of yarn are the some of 

the process parameters which could be 

classified for the response tensile strength of 

yarn. The expert team of people should select 

the performance attributes. The similarly it 

can be applied to other elements of textile 

value chain The current study will help the 

textile company’s research & development 

managers, Industrial engineers, quality 

mangers and dyers to capture the optimized 

and robust process conditions to achieve the 

quality output. 
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